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Abstract

Secure communication and the exchange of sensitive information
are essential in the current digital era. The basis for securing privacy
and authenticity in online transactions, data exchange, and communi-
cation for the most part relies upon public key infrastructure (PKI).
The fascinating world of prime numbers, which looks so basic but with
some amazing properties and is essential to contemporary encryption,
is at the foundation of PKI. In this article, we will explore the im-
portance of prime numbers, the idea of prime factorization, and how
large primes strengthen the PKI infrastructure. We will also demystify
our operations to comprehend how two crucial cryptographic systems,
RSA and Diffie-Hellman, use prime numbers for communication.
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1 Primes are the foundation of security

Mathematicians and alike from the days of antiquities have always been in-
trigued with prime numbers. Due to their inherent unpredictable nature and
mathematical characteristics, these distinctive numbers serve as the primary
building blocks of contemporary encryption. Due to the fact that they seem
so basic, prime numbers play a crucial role in the development of sophisti-
cated encryption algorithms.

1.1 What are Prime Numbers

In a nutshell, integers higher than 1 have no divisors besides 1 and themselves.
We can also state that prime numbers are products of exactly two numbers,
1 and the number itself.

1.2 The importance of Prime Factorization

Many encryption techniques are based on the mathematical idea of prime
factorization, which is the process of dividing an integer into its prime com-
ponents. A big composite number can be created by multiplying two prime
numbers together, but it is far more difficult to reverse this process and iso-
late the original prime factors from the composite number. To ensure the
security of data transmission, encryption techniques take advantage of this
capability.

1.3 The Strength of Large Primes in PKI

Large prime numbers are used in PKI to generate robust encryption keys.
The difficulty of breaking down huge composite numbers into their prime
components prevents malevolent attempts to decrypt data from succeeding.
As the computing work required for prime factorization increases exponen-
tially with the size of the primes, the encryption becomes more secure the
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greater the prime numbers employed.

Example: Let’s take a prime number 2996863034895 and find out which
combination of prime numbers created this number.

Starting with prime numbers:

We can check pairs of prime numbers to see if their product equals 2996863034895.
Starting with the smallest prime, 2. However, 2 is too small to be part of
the prime factorization of 2996863034895.

Moving on to the next prime, 3. Again, 3 is too small to be a factor.
Continue with larger primes: 5, 7, 11, 13, and so on. After checking var-
ious combinations, we find that the prime factorization of 2996863034895 is:
2996863034895 = 5 * 599372606979.

A conventional computer could compute this number in a matter of seconds
or minutes. However, the strength of PKI lies in selecting a really large
number, like the one that is indicated below.

160630393859959858403673358280589999181824270743702686766853447808
113686595032379775270855285205603517787773581452662258586298854198
088226545769625982424577024442756940367615139713401263698454836286
268191545734053746348197852653690734067448833293732555971297334238
820768817693536232555504815218981217702993799922836946058364394332
786285138585788360869153430548036327141873573881929843779500484349
960741533266926289332656487105743724325052526868801

It can take a long time to factor the above number, which has hundreds of
digits, using traditional techniques like the Number Field Sieve (NFS). It
could take hours, days, or even longer to factor in large numbers, even with
modern hardware and effective implementations.

1.4 Utilizing the power of large prime numbers (RSA)

One of the most popular encryption methods in PKI is RSA (Rivest-Shamir-
Adleman). It largely depends on the properties of prime numbers in math-
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ematics. Two unique prime integers are chosen to create an RSA key pair.
For encryption and decryption, respectively, one prime is needed. The mod-
ulus, the product of these two prime numbers, is difficult to factor, and this
complexity is what gives RSA its security. It is still extremely difficult to
break RSA encryption by factoring huge primes, even with modern process-
ing capacity.

Example: Let’s say Alice wishes to send Bob a secure communication. Here
is an overview of the RSA procedure:

1. Bob generates a key pair: a public key (containing a modulus and an
encryption exponent) and a private key (containing the same modulus
and a decryption exponent).

2. Bob shares his public key with Alice, who uses it to encrypt her mes-
sage.

3. Alice sends the encrypted message to Bob.

4. Bob uses his private key to decrypt the message and read its contents.

2 How secure is RSA

The difficulty of factoring huge numbers is directly related to the security
of RSA encryption. While multiplying two large prime numbers to produce
the public and private keys is relatively simple, factoring the product of
those two prime numbers (the modulus) back into its prime components is
thought to be computationally infeasible for sufficiently large prime numbers.
This is where RSA’s strength lies. The foundation of RSA’s security is this
computational challenge.

2.1 Two significant factors impact RSA’s security

1. Key Size: The encryption gets safer the greater the prime numbers used
to create the RSA keys. Larger key sizes are advised to keep security
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as computational power increases. As of my most recent update, RSA
key sizes of 2048 bits were frequently advised, and several apps had
already switched to key sizes of 3072 or 4096 bits.

2. Algorithmic Development: The creation of more effective factoring al-
gorithms has an impact on the security of RSA. Although Shor’s algo-
rithm can be executed on large-scale, fault-tolerant quantum comput-
ers, RSA is still thought to be secure against conventional computers.
However, it is unclear when such quantum computers will be developed
that will be able to crack RSA.As the race to gain quantum supremacy
is ongoing, it’s just a matter of time before such computers will be able
to crack RSA for a reasonable key length for a reasonable computing
price and reasonable value of the information being deciphered.

3 Diffie–Hellman key exchange

This technique is used for the exchange of keys between two parties securely
over an insecure medium. This technique allows the sharing of the key for
algorithms such as DSS which can be used for digital signature but not for
key exchange.

3.1 Example 1

Let’s say Alice wishes to send Bob a secure communication. Here is an
overview of the Diffie–Hellman key exchange procedure:

Alice and Bob share a prime “p” and “a” such that a < p and a is a primitive
root of p. A primitive root is a number when raised to different powers such
as (a2, a3, a4, an), generating all remainder when divided by a prime number.

1. Alice generates a private key Xa such that Xa < p.

2. Bob generates a private key Xb such that Xb < p.

3. Alice calculates a public key Ya = aXamodp.
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4. Bob calculates a public key Yb = aXbmodp.

5. Alice sends Ya to Bob over an insecure medium.

6. Bob sends Yb to Alice over an insecure medium.

7. Alice calculates shared secret key Ka=Y Xa
b modp.

8. Bob calculates shared secret key Kb=Y Xb
a modp.

As one can see, Alice and Bob calculated the same shared secret key using this
procedure. This allows Alice and Bob to use such shared keys for subsequent
symmetric encryption of messages.

3.2 Example 2

Here is an example with some numbers:

Let’s say p=23, g(p)=5 1

1. Let’s say that Alice’s private key is Xa = 6

2. Let’s say that Bob’s private key is Xb = 15

3. The public key of Alice is Ya = 56mod23 = 8

4. The public key of Bob is: Yb = 515mod23 = 19

5. Ya is sent to Bob and Yb to Alice.

6. Shared Key K as calculated by Alice is:Ka=Y Xa
b modp i.e 196mod23 = 2

7. Shared Key K as calculated by Bob:Kb=Y Xb
a modp i.e 815mod23 = 2

As one can see the shared key Ka=Kb and can be used to sign symmetric
encryption of messages. Bear in mind that Diffie–Hellman key exchange is
susceptible to Man-in-the-Middle Attack.

1https://www.geeksforgeeks.org/primitive-root-of-a-prime-number-n-modulo-n/)
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3.3 Man-in-the-Middle Attack in Diffie–Hellman

A very simple example of a procedure for a Man-in-the-Middle Attack in
Diffie–Hellman key exchange2 is as follows. Let’s say Alice wishes to send
Bob a secure communication but Voldemort is in the middle to intercept
the key exchange. Here is an overview of the Diffie–Hellman key exchange
procedure:

p = 23 and g(p) = 5

Alice generates a private key. Xa = 6

Computes the Public key

Ya = g(p)Xamodp = 56mod23 = 8 (1)

and sends it over to Bob.

Alice will compute the secret key as

K2 = Yd2
Xamodp = 206mod23 = 16 (2)

Voldemort generates two private keys. Xd1 = 3;Xd2 = 5

He also intercepts Alice’s and Bob’s public keys Ya and Yb respectively.

Voldemort computes two public keys

Yd1 = g(p)Xd1modp = 53mod23 = 10 (3)

and sends it to Bob instead of Alice’s public key.

Yd2 = g(p)Xd2modp = 55mod23 = 20 (4)

and sends it to Alice instead of Bob’s public key.

Voldemort can also compute secret Keys as

K2 = Y Xd2
a modp = 85mod23 = 16 (5)

2Some assumptions are made such as p and thus g(p) is known to the Man-in-the-
Middle party.
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K1 = Y Xd1
b modp = 193mod23 = 5 (6)

Bob generates a private key. Xb = 15

Computes the public key

Yb = g(p)Xbmodp = 515mod23 = 19 (7)

and sends it over to Alice.

Bob will compute the secret key as

K1 = Yd1
Xbmodp = 1015mod23 = 5 (8)

As one can see, Voldemort has Bob and Alices’ secret key and since he is in
the middle, he can send messages impersonating both Bob and Alice at his
convenience. However, in the real world, the key exchange is more complex,
including the sharing, big prime, and primitive root of prime.

4 Quantum Computing threat and the future

Quantum computers equipped with Shor’s algorithm could pose a catas-
trophic threat to the PKI infrastructure, which is based on the security of
prime numbers. Large prime numbers’ current resilience to attacks may shat-
ter in the face of quantum machines’ immense processing power. The foun-
dation of safe online interactions could be destroyed by the rapid decryption
of encrypted communications and data that previously remained immune to
conventional attacks. Researchers and specialists in cryptography are work-
ing against the clock to develop and put into practice quantum-resistant
encryption techniques as the threat posed by these technologies grows. Data
security will be maintained even in a post-quantum world thanks to these
new algorithms, which are built to withstand the powerful computing power
of quantum computers.

Some of the cryptography algorithms that are being investigated are:

1. Lattice-based cryptography
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2. Code-based cryptography

3. Multivariate Polynomial Cryptography

4. Hash-based Cryptography

One possible solution to these problems is the QKD (Quantum Key Distri-
bution), which utilizes the phenomenon of quantum entanglement and the
no-cloning theorem to establish an unbreakable key exchange between par-
ties, ensuring that any eavesdropping attempt is detectable.

Having said that, NIST predicts that by 2029, quantum computers will be
able to crack current public key infrastructure, such as the 128-bit AES en-
cryption now used to safeguard private data exchanged over the Internet.
The uncertainty around quantum computing will, however, only be elimi-
nated if a hardware platform with at least 10,000 qubits is made scalable
and affordable.
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